Search for projects by name
Redstone is a chain built for onchain games and autonomous worlds running MUD. It's an implementation of OP Plasma with DA challenges.
Redstone is a chain built for onchain games and autonomous worlds running MUD. It's an implementation of OP Plasma with DA challenges.
Currently the system permits invalid state roots. More details in project overview.
Proof construction and state derivation rely on data that is NOT published onchain. Redstone uses a custom data availability provider without attestations, relying though on DA challenges.
There is no window for users to exit in case of an unwanted regular upgrade since contracts are instantly upgradable.
Only the whitelisted proposers can publish state roots on L1, so in the event of failure the withdrawals are frozen.
OP Stack projects can use the OP fault proof system, already being deployed on some. This project though is not using fault proofs yet and is relying on the honesty of the permissioned Proposer and Challengers to ensure state correctness. The smart contract system permits invalid state roots.
Funds can be stolen if an invalid state root is submitted to the system (CRITICAL).
Redstone relies on DA challenges for data availability. If a DA challenger finds that the data behind a tx data commitment is not available, they can submit a challenge which requires locking a bond within 12h. A challenge can be resolved by publishing the preimage data within an additional 12h. In such case, a portion of the challenger bond is burned, with the exact amount estimated as the cost incurred by the resolver to publish the full data, meaning that the resolver and challenger will approximately lose the same amount of funds. The system is not secure if the malicious sequencer is able to outspend the altruistic challengers. If instead, after a challenge, the preimage data is not published, the chain reorgs to the last fully derivable state.
Funds can be stolen if the sequencer is malicious and is able to economically outspend the altruistic challengers.
Funds can be stolen if there is no challenger willing to challenge unavailable data commitments.
The operator is the only entity that can propose blocks. A live and trustworthy operator is vital to the health of the system.
MEV can be extracted if the operator exploits their centralized position and frontruns user transactions.
Because the state of the system is based on transactions submitted on the underlying host chain and anyone can submit their transactions there it allows the users to circumvent censorship by interacting with the smart contract on the host chain directly.
The user initiates the withdrawal by submitting a regular transaction on this chain. When the block containing that transaction is finalized the funds become available for withdrawal on L1. The process of block finalization takes a challenge period of 7d to complete. Finally the user submits an L1 transaction to claim the funds. This transaction requires a merkle proof.
Funds can be frozen if the centralized validator goes down. Users cannot produce blocks themselves and exiting the system requires new block production (CRITICAL).
If the user experiences censorship from the operator with regular exit they can submit their withdrawal requests directly on L1. The system is then obliged to service this request or halt all withdrawals, including forced withdrawals from L1 and regular withdrawals initiated on L2. Once the force operation is submitted and if the request is serviced, the operation follows the flow of a regular exit.
OP stack chains are pursuing the EVM Equivalence model. No changes to smart contracts are required regardless of the language they are written in, i.e. anything deployed on L1 can be deployed on L2.
Owner of AddressManager. Admin of OptimismPortal, SystemConfig, L2OutputOracle, L1ERC721Bridge, OptimismMintableERC20Factory, L1StandardBridge.
Central actor allowed to post new L2 state roots to L1.
Central actor allowed to delete L2 state roots proposed by a Proposer.
Central actor allowed to pause deposits and withdrawals.
Those are the participants of the ProxyAdminOwner.
Owner of the DataAvailabilityChallenge contract. It can upgrade the contract params, potentially making the system insecure.
The L2OutputOracle contract contains a list of proposed state roots which Proposers assert to be a result of block execution. Currently only the PROPOSER address can submit new state roots.
Upgrade delay: No delay
The L1CrossDomainMessenger (L1xDM) contract sends messages from L1 to L2, and relays messages from L2 onto L1. In the event that a message sent from L1 to L2 is rejected for exceeding the L2 epoch gas limit, it can be resubmitted via this contract’s replay function.
Upgrade delay: No delay
Upgrade delay: No delay
The DataAvailabilityChallenge contract is used to challenge the data availability of tx data hashes. See the technology section for more details.
Upgradable contract that manages the PAUSED_SLOT, a boolean value indicating whether the Superchain is paused, and GUARDIAN_SLOT, the address of the guardian which can pause and unpause the system. The address of the guardian can only be modified by the ProxyAdmin by upgrading the SuperchainConfig contract. This contract is a fork of Optimism’s superchainConfig contract and it’s unrelated to the one used by the Superchain.
Main entry point for users depositing ERC20 token that do not require custom gateway.
Upgrade delay: No delay
Main entry point for users depositing ETH.
Upgrade delay: No delay
The current deployment carries some associated risks:
Funds can be stolen if a contract receives a malicious code upgrade. There is no delay on code upgrades (CRITICAL).